
CS598APE Due: Feb 17, 2025

Mini-Paper 1: Raytracer
Name: Don’t forget to add your name Collaborators: List all sources used

The first mini-paper this semester is to analyze and improve the performance of a raytracer program. This
project provides you the opportunity to explore optimizations for profiling performance, reducing work, and
introducing parallelism. For this project, you will work in teams of two (section 1), and the grading will be
based on your report (section 5.1) and your artifact evaluation (section 5.2). You will also peer review the
reports and artifacts of others.

1 Working in Teams

In this project you will be working in teams of two. Both members of a team will get the same grade.
For this project you must use pair programming and both of you should take turns being the driver (who

types) and the observer (who watches, advises, and plans ahead). You should switch roles at a relatively fine
grain, e.g. switch between writing the optimization and the test for it. Make sure that you are both familiar
with the algorithmic concepts and infrastructure, enough that you could do the entire project on your own.

Your report should include a paragraph which describes how you worked together on this project, in-
cluding the design, implementation, and testing of your optimizations.

You are welcome to use any source of inspiration or tool to create your optimizations, subject to the
course policy on the website. These may include new code/changes to code and the use of different tools to
generate or change code. You are welcome to also try more advanced techniques that do not fall into this
category (e.g. specific hardware). For precise details, check section 5.2.

2 Accessing Course Infrastructure

You are welcome to use any hardware of your choosing to test and perform optimizations, assuming that
the optimizations you write can be replicated by others. This does not mean that others need to replicate
your exact performance results (e.g. exactly 12% boost by doing X), but that the optimization you write
generally results in an improvement and does not rely on non-standard hardware features. If you want to use
your own machine for setup and optimization, you are responsible for ensuring the requisite requirements
are available.

We have given students access to UIUC teaching VMs. You may use them for completing the home-
works and project.

3 Raytracer

We are optimizing a raytracer. Raytracing is a technique for generating realistic-looking images of a virtual
scene. The scene is defined by a number of objects and images are created by simulating light being emitted
from a camera and bouncing off of objects until it hits light sources. See Figure 1 to get a feel for how
raytracing works.

3.1 Where Is the Code?

The application code for this project is available on GitHub. Fork this code, but please keep your code and
optimizations in private (and not public) repositories.

Mini-Paper 1-1

https://en.wikipedia.org/wiki/Pair_programming
https://prontolab.github.io/598APE/about/
http://prontolab.github.io/598APE/about/#compute-infrastructure
https://github.com/PRONTOLab/598APE-HW1


Light Source

Scene Object

Shadow RayView Ray

Image
Camera

Figure 1: High level view of a ray tracer in action.

The README.md contains more information about the layout of the Raytracer code and how to execute
it. The Raytracing application can emit images, or a sequence of images which can be used to create a video.

3.2 What are your Tasks?

Your task in this project is to ensure that the four sample inputs to the program run as fast (and as high
resolution) as possible. They are as follows:

• A piano room with a checkered floor and a pink staircase

• A rotating globe on the sea

• A mesh which has the following 2 variants:

– A sphere (a simpler one)

– An elephant (a slightly more complex one)

See Figure 2 to see how all the 4 testcases look like. Instructions to run the testcases are specified in the
README.md

Intro to docker and packaging

4 How to Tackle this Homework

1. Create a private fork of the homework repository on GitHub. Instructions on how to do that are in this
GitHub gist.

2. Look at the Raytracer code, see where you can make some obvious improvements. Profile, identify
bottlenecks, and optimize them. Keep doing this again and again. Don’t prematurely optimize.

3. Use perf to identify performance hotspots in your code. One super easy way to get started is to use
perf to produce a flamegraph, and see the busiest functions in your code.

4. Use debuggers like gdb or rr to assist you with debugging. Ensure that your programs are safe from
memory leaks using tools like valgrind.

5. Implement one optimization at a time. This helps in reasoning about your optimizations, and repro-
ducing the effect of a specific optimization if needed.

Mini-Paper 1-2

https://gist.github.com/vimarsh6739/d920781b429f1ef8ec559e62aecd0e12
https://gist.github.com/vimarsh6739/d920781b429f1ef8ec559e62aecd0e12
https://martin.leyrer.priv.at/y2022/m09/premature_optimisation.html
https://www.brendangregg.com/perf.html
https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
https://sourceware.org/gdb/
https://rr-project.org/


(a) Piano Room (b) Globe on the sea

(c) Sphere on a meshgrid (d) Elephant on a meshgrid

Figure 2: The 4 test cases that you will optimize.

Mini-Paper 1-3



6. Document your approach in the report. Make sure your code is reproducible (the whole point of
Docker is to avoid the oh but it runs on my computer... )

7. Review & run the code your peers write!

5 What to Hand In

5.1 Report

Your report should be about (and no more than) 3 pages long(excluding references). Use the ACM Sigplan
Template (follow the formatting in sample-sigplan.tex). It should include:

1. A brief description of your optimizations. This can include optimizations which helped performance,
optimizations which did not help performance, or potential optimizations you did not implement and
why (for example as profiling indicated it not to be helpful). Describe what kind of optimization you
tried (e.g. algorithmic, data-structure, parallelism, caching, work-reduction, etc).

2. Specify the assumptions which an optimization relies on, and the scope in which your optimization
applies. For example, one could hardcode the application to directly output the desired image (perhaps
conditional on the exact input specification) – but this would only provide a speedup for that scene at
that resolution.

3. Include graphs to indicate performance improvements/slowdowns (if any). Remember, the goal here
is to not just get blind speedups, but also attempt to investigate why we are getting those speedups (or
perhaps why we are not).

4. A brief introspection section for your optimizations: Performance engineering involves coming up
with ideas that can improve performance, and profiling/deciding which ones will be impactful in
practice. Sometimes you can do something but speedup up a function 100× that represents < 1% of
runtime won’t change much. Similarly, sometimes you need to do prerequisite optimizations before
the fruit of a bigger optimization can apply (e.g. rewrite a datastructure to be a linear scan is required
before caching can be improved).

5.2 Artifact

You will be expected to submit an artifact, which will be independently evaluated by random team. To
ensure the ease of reproducibility, the artifact should be a well documented git repo which should have
at-least the following things in it’s README.md

1. All the tools needed to construct a binary from your source code. We recommend modifying
docker/Dockerfile and specifying the packages needed to install/build your tools.

2. Instructions on how to build and run your code. This includes how to run and benchmark your
baseline code, and verify that your optimizations hold water. Remember, part of your grade depends
on whether your peers are able to replicate the results stated in your paper.

3. List your optimizations, and what commands, flags, or earlier git commits are needed to evaluate
their effectiveness.

Mini-Paper 1-4

https://www.overleaf.com/latex/templates/association-for-computing-machinery-acm-sigplan-proceedings-template/rfvsrhgmghtc
https://www.overleaf.com/latex/templates/association-for-computing-machinery-acm-sigplan-proceedings-template/rfvsrhgmghtc
https://git-scm.com/


Custom Hardware You are welcome to also try more advanced optimizations that require specific hard-
ware to run – for example GPU tensor cores, RTX, DLSS, Intel AVX-512 or Arm NEON intrinsics(for the
M1 Mac folks...).

However, in this case you must submit two artifacts: one artifact which can be run by anyone with
a standard Unix machine (like the provided course VMs or Docker files), and a second artifact detailing
optimizations based on non-replicable setups. We recommend using separate git branches or commit hashes
to easily distinguish both artifacts.

6 How to Submit?

You will be using HotCRP to submit and peer-review your reports. We will open up the submission link as
soon as the deadline nears. As for the code, it is sufficient to provide a link to the github repo you will be
using for writing the code.

7 Some Tutorials

Please refer to this gist on a tutorial to help you out with the following aspects of the homework:

• Forking a private copy of a public repo.

• How to use perf

The README.md on the project page has enough information on how to build and run your own
Dockerfile if you need more pre-existing software.

Mini-Paper 1-5

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#techs=AVX_512
https://developer.arm.com/architectures/instruction-sets/intrinsics/#f:@navigationhierarchiessimdisa=[Neon]&f:@navigationhierarchiesinstructiongroup=[Vector%20arithmetic]
https://gist.github.com/vimarsh6739/d920781b429f1ef8ec559e62aecd0e12
https://github.com/PRONTOLab/598APE-HW1/tree/main?tab=readme-ov-file#docker

	Working in Teams
	Accessing Course Infrastructure
	Raytracer
	Where Is the Code?
	What are your Tasks?

	How to Tackle this Homework
	What to Hand In
	Report
	Artifact

	How to Submit?
	Some Tutorials

